Matrix completion discriminant analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Matrix Completion in Presence of Outliers

Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...

متن کامل

Sequential Matrix Completion

We propose a novel algorithm for sequential matrix completion in a recommender system setting, where the (i, j)th entry of the matrix corresponds to a user i’s rating of product j. The objective of the algorithm is to provide a sequential policy for user-product pair recommendation which will yield the highest possible ratings after a finite time horizon. The algorithm uses a Gamma process fact...

متن کامل

Universal Matrix Completion

The problem of low-rank matrix completion has recently generated a lot of interest leading to several results that offer exact solutions to the problem. However, in order to do so, these methods make assumptions that can be quite restrictive in practice. More specifically, the methods assume that: a) the observed indices are sampled uniformly at random, and b) for every new matrix, the observed...

متن کامل

High-Rank Matrix Completion

This paper considers the problem of completing a matrix with many missing entries under the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces. This generalizes the standard low-rank matrix completion problem to situations in which the matrix rank can be quite high or even full rank. Since the columns belong to a union of subspaces, this problem may also ...

متن کامل

Coherent Matrix Completion

Matrix completion concerns the recovery of a low-rank matrix from a subset of its revealed entries, and nuclear norm minimization has emerged as an effective surrogate for this combinatorial problem. Here, we show that nuclear norm minimization can recover an arbitrary n⇥n matrix of rank r from O(nr log2(n)) revealed entries, provided that revealed entries are drawn proportionally to the local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2015

ISSN: 0167-9473

DOI: 10.1016/j.csda.2015.06.006